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Motivation

Definition: Event

“Something that happens at a given
place and time between a group of
actors.” [CSG+02]

For large document collections,
how can we...

• obtain events from unstructured text?

• identify connections across documents?

• support ad-hoc event search?
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Graph Extraction from Unstructured Text
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Edge Weight Generation

For edges (x, y) for which y is a page or
sentence, count only (co-) occurrences:

ω(x, y) =

{
1 if y contains x

0 otherwise

For edges (x, y) between entity types
and terms, aggregate co-occurrence
instances I: sum over similarities
derived from sentence distances s.

ω(x, y) :=
∑
i∈I

exp(−s(x, y, i))
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LOADing Wikipedia

For the entire English Wikipedia
(∼ 4.5M articles with annotations):

• use only unstructured text.

• exclude pages of lists.

• exclude info boxes.

• exclude references.

Extract named entities with:

• Stanford NER for locations,
organizations and actors [FGM05]

• Heideltime for dates [SG13]
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Wikipedia LOAD Graph

edges LOC ORG ACT DAT TER SEN PAG
LOC 0
ORG 91 0
ACT 276 106 0
DAT 83 46 128 0
TER 183 94 317 57 0
SEN 71 21 84 38 412 0
PAG 0 0 0 0 0 54 0
nodes 2.7 3.4 7.1 0.2 4.9 53.5 4.5

Number of edges and nodes (in millions) of the LOAD graph of the
English Wikipedia. ∼ 2B edges and ∼ 76M nodes in total.
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Single Entity Queries

How can we rank nodes in one set Y by their neighbours in set X?
Adapt tf-idf scores to the graph [RV13]!

• Term frequency:
edge weights
tf(x, y) ≈ ω(x, y)

• Inverse document frequency:
number of neighbours
idf(x) ≈ |Y |

degY (x)

r(x, y) ≈ ω(x, y) log |Y |
degY (x)

〈LOC : (ACT,Mark Spitz)〉
location score
munich 1.00000
us 0.70651
states 0.49010
united states 0.46918

Query: 〈Y : (X, value)〉
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Multi-Entity Queries

How can we rank nodes in Y by neighbours in multiple sets Xn?
Combine individual set scores:

r(~x, y) :=
1

n
η(~x, y)

n∑
i=1

r(xi, y)

Ensure triangular cohesion when combining results:

η(~x, y) :=

{
1 if

∑n
i=1

∑n
j>iMyxiMyxj > 1

0 otherwise

Where M is the adjacency matrix of the graph.
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Multi-Entity Query Examples

〈DAT : (ACT,Mark Spitz), (LOC,Munich)〉
date score
1972-08-29 0.50851
1972-08-31 0.48217
1972-09-05 0.22738
1947-03-10 0.10511
2006-09-07 0.09226

〈TER : (ACT,Mark Spitz), (LOC,Munich), (DAT, 1972)〉
term score
olymp 0.89630
medal 0.54205
gold 0.43211
won 0.38904
record 0.34548
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Summarization: Sentence Queries

How can sentences in S be used to describe combinations of
entities in Xn?

Find a sentence that contains them:

r(~x, s) :=

n∑
i=1

Msxi

〈SEN : (ACT,Mark Spitz)〉
Mark Spitz of the United States had a spectacular run, lining
up for seven events, winning seven Olympic titles and setting
seven world records.
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Entity Linking: Document Queries

Since we created the LOAD graph from Wikipedia, can we link
entities in Xn to pages P?

Use sentences to find the page that contains them most frequently:

r(~x, p) :=
∑
s∈S

n∑
i=1

MsxiMsp

〈PAG : (ACT,Mark Spitz)〉
Wiki page ID 66265: Mark Spitz
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Event Extraction and Completion

Intuition:

• Events correspond to triangular
structures in the network

• Participating entities can be used to
complete events
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Query Answering Speed
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Asymptotic complexity of entity queries: O(degX(y) degY (x))
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Historic Event Evaluation Data

Evaluation data set from a “This Day in History” website [Gui95]

• old enough to not contain
Wikipedia data

• exactly one date per sentence

• 500 hand-annotated
historic events

• example: Ernest Hemingway,
Red Cross volunteer, wounded
in Italy on 1918-07-08.
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Evaluation on Historic Event Data

Retrieving Dates of Historic Events
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NER based on Wikipedia & Wikidata
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Summary

Ongoing work:

• online search and query interface for Wikipedia

• streaming model for online news

• inclusion of parts-of-speech

LOAD summary:

• fast entity and event exploration

• can support most entity-related IE tasks

• can be extended to any kind of entity

• scalable and fast

• language-agnostic with entity linking

LOAD your data before you do entity-based analyses.

Terms over LOAD: Named Entities for Cross-Document Event Extraction Andreas Spitz 19 of 20



Motivation Network Construction Applications Evaluation Summary & Outlook

Summary

Ongoing work:

• online search and query interface for Wikipedia

• streaming model for online news

• inclusion of parts-of-speech

LOAD summary:

• fast entity and event exploration

• can support most entity-related IE tasks

• can be extended to any kind of entity

• scalable and fast

• language-agnostic with entity linking

LOAD your data before you do entity-based analyses.

Terms over LOAD: Named Entities for Cross-Document Event Extraction Andreas Spitz 19 of 20



Motivation Network Construction Applications Evaluation Summary & Outlook

Available for download:
• Wikipedia LOAD network (Stanford NER)

• Wikipedia LOAD network (Wikidata)

• Code for generating LOAD networks

• Code for LOAD query interface

http://dbs.ifi.uni-heidelberg.de/index.php?id=load
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